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The problem of finding the most effective pseudo-particle profile for instanton liquid

(IL) model of the QCD vacuum [1] has already been formulated in the first papers treat-

ing the pseudo-particle superposition as the quasi-classical configuration saturating the

generating functional [2] of the following form

Z =

∫
D[A] e−S(A) , (1)

where S(A) is the Yang-Mills action. Although the solution proposed in ref. [2] was quite

acceptable phenomenologically the consequent more accurate analysis discovered several

imperfect conclusions putting into doubt the assertion about the instanton ensemble getting

stabilization and some additional mechanism should be introduced to fix such an ensem-

ble [3]. In this note we revisit the task formulated in ref. [2] within the self-consistent

approach proposed in our previous paper [4]. We are not speculating on the detailed mech-

anism of stabilizing and are based on one crucial assumption which is the existence of

non-zero gluon condensate in the QCD vacuum. This idea is not very original but turns

out far reaching in the context of our approach. The particular form and properties of this

condensate will be discussed in the following paper.

Thus, as the configuration saturating the generating functional (1) we take the follow-

ing superposition

Aa
µ(x) = Ba

µ(x) +

N∑

i=1

Aa
µ(x; γi) , (2)

here Aa
µ stands for the (anti-)instanton field in the singular gauge

Aa
µ(x; γ) =

2

g
ωabη̄bµν

yν

y2 f(y), y = x − z , (3)

γi = (ρi, zi, ωi) denotes all the parameters describing the i-th (anti-)instanton, in particular,

its size ρ, colour orientation ω, center position z and as usual g is the coupling constant

of gauge field. The function f(y) introduces the pseudo-particle profile and will be fixed

by resolving the suitable variational problem. For example, for the conventional singular

instanton it looks like

f(y) =
1

1 + y2

ρ2

. (4)

In analogy with this form we consider the function f depending on y2 or, more precisely,

on the variable x =
y2

ρ̄2 at some characteristic mean pseudo-particle size ρ̄. Dealing with

the anti-instanton one should make the substitution of the ’t Hooft symbol η̄ → η. It is

seen from (2) we ’singled out’ one pseudo-particle of ensemble and introduced the special

symbol B for its field which actually has the same form as eq. (3).

The strength tensor of this ’external’ field and the field of every separate pseudo-

particle A can be written as

Ga
µν = Ga

µν(B) + Ga
µν(A) + Ga

µν(A,B) , (5)
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where two first terms are given by the standard definition of field strength

Ga
µν(A) = ∂µAa

ν − ∂νA
a
µ + g fabcAb

µAc
ν , (6)

with the entirely antisymmetric tensor fabc. In particular, for the singular instanton of

eq. (3) it takes the form

Ga
µν = −4

g
ωak

[
η̄kαβ

f(1 − f)

y2 + (η̄kµβ yν − η̄kνα yµ)
yα

y2

(
f ′ − f(1 − f)

y2

)]
, (7)

where f ′ means the derivative over y2. The third term of eq. (5) presents the ’mixed’

component of field strength and is

Ga
µν(A,B) = g fabc(Bb

µAc
ν − Bb

νA
c
µ) = g fabcωcd 2

g
(Bb

µ η̄dνα − Bb
ν η̄dµα)

yα

y2 f. (8)

It was shown in ref. [4] that in quasi-classical regime which is of particular interest for

applications, the generating functional (1) could be essentially simplified if reformulated in

terms of the field BA averaged over ensemble A. Performing the cluster decomposition [5]

of stochastic exponent in eq. (1)

〈exp(−S)〉ωz = exp

(
∑

k

(−1)k

k!
〈〈Sk〉〉ωz

)
, (9)

where 〈S1〉 = 〈〈S1〉〉, 〈S1S2〉 = 〈S1〉〈S2〉+ 〈〈S1S2〉〉, . . . (the first cumulant is simply defined

by averaging the action) the higher terms of effective action for the ’external’ field in IL

could be presented as

〈〈S[BA]〉〉A =

∫
d4x

(
G(BA) G(BA)

4
+

m2

2
B2

A

)
, (10)

and the mass m is defined by the IL parameters developing for the standard singular

pseudo-particles (4) the following form (see, also below)

m2 = 9π2 n ρ̄2 Nc

N2
c − 1

, (11)

with n = N/V where N is the total number of pseudoparticles in the volume V and Nc

is the number of colours. The small magnitude of characteristic IL parameter (packing

fraction) nρ̄4 allows us at decomposing to keep the contributions of one pseudo-particle

term (∼ n) only.

The effective action in eq. (10) implies a functional integration in which the vacuum

stochastic fields are not destroyed by the external field. Then there is no reason to develop

the detailed description of the field B driven by the symmetries of initial gauge invariant

Lagrangian for the Yang-Mills fields. In practice it could be understood as an argument to

do use the averaged action dealing with the field B. It means the colourless binary (and

similar even) configurations only of field B survive in the effective action. In other words

the decomposition B ≃ BA + · · · is used (in what follows we are not maintaining the index
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for the field B). Obviously, if there is any need of more detailed description including, for

example, information on the fluctuations of field B one should operate with the correlation

functions of higher order and the corresponding chain of the Bogolyubov equations.

The selfconsistent description of pseudo-particle ensemble may not be developed based

on eq. (10) only because in such a form the pseudo-particles of zero size ρ = 0 are most

advantageous. In ref. [4] the version of variational principle was proposed which makes it

possible to determine the selfconsistent solution in long wave-length approximation for the

pseudo-particle ensemble (anti-instantons in the singular gauge with standard profile (4))

and external field. Here it adapts to the saturating configuration (2) also and its more

optimal (than standard) profile is defined, as suggested in ref. [2], taking into account the

IL parameter change while the pseudo-particle field is present.

The contribution of saturating configuration into the generating functional is evaluated

as (see [2] for the denotions)

Z ≃ Y =

∫
D[B]

1

N !

∫ N∏

i=1

dγi e−S(B,γ) . (12)

The following terms should be taken into consideration

S(B, γ) = −
N∑

i=1

ln d(ρi) + β Uint +

N∑

i=1

U i
ext(B) + S(B) , (13)

(the details of deducing this expression can be found in [4]). Here we remind only that to ob-

tain it one should average over the pseudo-particle parameters and to hold the highest con-

tributions only at summing up the pseudo-particles. If the saturating configurations are the

instantons in singular gauge with the standard profile (4) the first term describing the one

instanton contributions takes the form of distribution function over (anti-)instanton sizes

d(ρ) = CNc
Λb ρb−5β̃2Nc , (14)

where

b =
11

3
Nc −

2

3
Nf , (15)

β̃ = −b ln(Λρ̄),

CNc
≈ 4.66 exp(−1.68Nc)

π2(Nc − 1)!(Nc − 2)!
.

If one considers the profile of eq. (3) the change of one pseudo-particle action which has

the form

Si = 3

∫ ∞

0

dy2

y2 β
[
(y2f ′)2 + f2(1 − f)2

]
, (16)

should be absorbed while calculating. Here β = 8π2/g2 is the characteristic action of single

pseudo-particle (4) which is defined at the scale of average pseudo-particle size β = β(ρ̄)

where β(ρ) = − ln CNc
− b ln(Λρ). The coefficient b enters the corresponding equations (in
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particular the distribution function (14)) always with the additional factor s = Si
β . It means

that in all the formula containing the one instanton contribution the following substitution

b → b s . (17)

should be done. The penultimate term of eq. (13) accumulates the partial pseudo-particle

contributions coming from the ’mixed’ component of the strength tensor (8) and describing

the interaction of pseudo-particle ensemble with the detached one, i.e.

U i
ext(B) =

∫
d4x

〈
Ga

µν(Ai, B) Ga
µν(Ai, B)

4

〉

γi

.

The other terms at the characteristic IL parameters are small as it was shown in ref. [4].

The average value of ’mixed’ component is given by the following formula

〈Ga
µν(A,B) Ga

µν(A,B)〉ωz =
18

V

Nc

N2
c − 1

I Bb
µ Bb

µ , B2 =
12

g2

f2

y2 , (18)

here I is defined by the integrated profile function of pseudo-particle

Iα,β = δα,β I =

∫
dy

yαyβ

y4 f2 , I =
π2ρ2

4

∫ ∞

0
dx f2 , x =

y2

ρ2 .

In particular, for the standard form of pseudo-particle we have
∫ ∞

0
dx f2 = 1 .

The corresponding constant (see [4]) ζ0 = 9 π2

2
Nc

N2
c −1 should be changed for the modified one

ζ = λζ0 , λ =

∫ ∞

0
dx f2 ,

in all terms describing the interaction of IL with detached pseudo-particle if the profile

function f is arbitrary. eq. (18) demonstrates that we are formally dealing with non-zero

value of gluon condensate which is given by the correlation function

〈Aa
µ(x; γ)Aa

µ(y; γ)〉ωz =
4

g2

Nc

N2
c − 1

ρ2

V
F

( |x − y|
ρ

)
. (19)

For the pseudo-particle of standard form the function F (∆) equals to

F (∆) =
π2

4

∆2 + 2

|∆|
√

∆2 + 4 ln

∣∣∣∣∣

√
∆2 + 4(∆2 + 1) + ∆3 + 3∆√

∆2 + 4 − ∆

∣∣∣∣∣−
(20)

−π2 (∆2 + 1)2

∆2 ln(1 + ∆2) + π2 ∆2 ln |∆| ,

with the asymptotic behaviours

lim
∆→0

F (∆) → π2 − π2

3
∆2 + π2 ∆2 ln |∆| , lim

∆→∞
F (∆) → π2

∆2 .

– 4 –



J
H
E
P
1
2
(
2
0
0
8
)
1
1
2

The presence of this condensate (19) which leads, in particular, to the mass definition as

in (11) just signifies the assumption mentioned at the beginning this note.

The second term of (13) describes the repulsive interaction between the pseudo-

particles of ensemble

β Uint =
∑

i,j

∫
d4x

〈
Ga

µν(Ai, Aj) Ga
µν(Ai, Aj)

4

〉

γi,γj

,

and actually presents the same contribution as Uext but being integrated with the field B

of every individual pseudo-particle as β Uint =
∫

d4x m2

2 B2. It results in the change of

coupling constant ξ2
0 = 27 π2

4
Nc

N2
c −1

describing the pseudo-particle interaction (see [2]) for

new form

ξ2 = λ2 ξ2
0 ,

(similar to the change of constant ζ). And eventually the last term of eq. (13) presents

simply the Yang-Mills action of the B field

S(B) =

∫
d4x

Ga
µν(B) Ga

µν(B)

4
.

It is worthwhile to notice that the topological charge of the configuration (4) is retained to

be equal to

N =
1

β

∫
d4x

Ga
µνG̃a

µν

4
= −6

∫ ∞

0
dx f ′f(1 − f) = 1 , G̃a

µν =
1

2
εµναβ Ga

αβ ,

here εµναβ is an entirely antisymmetric tensor, ε1234 = 1.

The generating functional (12) might be estimated with the approximating functional

(see [2]) as

Y ≥ Y1 exp(−〈S − S1〉) , (21)

where

Y1 =

∫
D[B]

1

N !

∫ N∏

i=1

dγi e−S1(B,γ)−S(B) , S1(B, γ) = −
∑

ln µ(ρi) ,

and µ(ρ) is an effective one particle distribution function defined by solving the variational

problem. In our particular situation the average value of difference of the actions is given

as follows

〈S − S1〉 =
1

Y1

1

N !

∫ N∏

i=1

dγi

[
β Uint + Uext(γ,B)−

∑
ln d(ρi)+

∑
ln µ(ρi)

]
e

P

lnµ(ρi)

=
N

µ0

∫
dρ µ(ρ) ln

µ(ρ)

d(ρ)
+

β

2

N2

V 2

1

µ2
0

∫
dγ1dγ2 Uint(γ1, γ2) µ(ρ1)µ(ρ2) +

+

∫
d4x

N

V

∫
dρ

µ(ρ)

µ0
ρ2ζ B2

=

∫
d4x n

( ∫
dρ

µ(ρ)

µ0
ln

µ(ρ)

d(ρ)
+

βξ2

2
n
(
ρ2
)2

+ ζρ2 B2

)
, (22)
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Figure 1: The energy E(α) when the profile function includes a screening effect (29) with the

parameter λ (s = 1) only taken into consideration (lower curve) and with both parameters used

(upper curve) (see the text).

with µ0 =
∫

dρ µ(ρ). In this note we estimate the functionals in the long wave length

(adiabatic) approximation, i.e. consider the IL elements to be equilibrated by the external

fixed field B. Afterwards, with finding the optimal IL parameters out we receive the

effective action for the external field in the selfconsistent form. eq. (22) is taken just in

such a form in order to underline the integration is executed over the IL elements and

the parameters describing their states are the functions of external field (i.e. could finally

be the functions of a coordinate x). The physical meaning of such a functional is quite

transparent and implies that each separate IL element develops its characteristic screening

of the attached field.

Now calculating the variation of action difference 〈S − S1〉 over µ(ρ) we obtain

µ(ρ) = C d(ρ) e−(nβξ2ρ2+ζB2)ρ2

,

where C is an arbitrary constant and its value is fixed by requiring the coincidence of

the distribution function when the external field is switched off (B = 0) with vacuum

distribution function then

µ(ρ) = CNc
β̃2NcΛbsρbs−5 e−(nβξ2ρ2+ζB2)ρ2

. (23)

With defining the average size as

ρ2 =

∫
dρ ρ2 µ(ρ)

µ0
,

we come to the practical interrelation between the IL density and average size

of pseudo-particles

(n β ξ2 ρ2 + ζ B2) ρ2 ≃ ν , (24)
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where ν = bs − 4
2 . Apparently, the size distribution of pseudo-particles can be presented

by the well-known form as

µ(ρ) = CNc
β̃2NcΛbsρbs−5 e

−ν
ρ2

ρ2 . (25)

Eqs. (22) and (25) allow us to get the estimate of generating functional (21) in the

following form

Y ≥
∫

D[B] e−S(B) e−E , (26)

E =

∫
d4x n

{
ln

n

Λ4 − 1 − ν

2
+

ζ ρ2 B2

2
− ln

[
Γ(ν)

2
CNc

β̃2Nc

]
− ν ln

ρ2

ν

}
.

Now taking into account eq. (24) and fixing a field B, parameters s and λ the maximum

of functional (26) over the IL parameters can be calculated by solving the corresponding

transcendental equation (dE
dρ̄

= 0) numerically. Here it is a worthwhile place to notice the

presence of new factor in the denominator of
Γ(ν)

2 what is caused by the Gaussian form

of the corresponding integral over ρ squared and, hence, the integration element requires

the introduction of 2ρ dρ. In ref. [2] this factor was missed. However, this fact has not

generated a serious consequence because any application of these results is actually related

to the choice of suitable quantity of the parameter Λ entering the observables (the pion

decay constant, for example). It means we should make the proper choice of basic scale.

Besides, we should also keep in mind the approximate character of IL model. Further we

give the results for both versions to demonstrate the dependence of final results on the

renormalized constant CNc
.

Searching the optimal configuration f we take the effective action in the form of non-

linear functional as

Seff =

∫
d4x

(
Ga

µν(B) Ga
µν(B)

4
+ E[B]

)
, (27)

in which the IL state is described by solutions ρ̄[B, s, λ], n[B, s, λ]. In practice the following

differential equation should be resolved

d2f

d2y2 = − 1

y2

df

dy2 +
f(1 − f)(1 − 2f)

y4 +
1

6β0

dE

df
, (28)

at fixed initial magnitude of f(x0) putting up the derivative in the initial point f ′(x0) in

such a way to have the solution going to zero when x is going to infinity. Parameter β0

is introduced to fix a priori unknown value of coupling constant in the pseudo-particle

definition (3). If the profile function has been fixed the configuration should be found

in the form in which the starting values of parameters s, λ and β0 coincide (within the

given precision) with the parameters obtained from the solution f . Nowadays this ap-

proach looks the most optimal one among other existing possibilities not only because of

the computational arguments but in view of the poor current level of understanding the in-

terrelation between perturbative and non-perturbative contributions while calculating the

effective Lagrangian. In fact, it was mentioned in ref. [2] that in more general (realistic)
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Figure 2: The IL density as the function of x = y2/ρ̄2. Three dashed curves correspond to the

different profile functions. The lowest dashed line corresponds to the standard form (4). The top

dashed line corresponds to the profile function with the screening factor (29) and one parameter λ

(s = 1) included and the middle line presents the same function but with two parameters included.

The solid line presents the selfconsistent solution of variational problem.

formulation of this problem eq. (28) should include the term responsible for the change of

’quantum’ constant CNc
with the function f changing. In principle, it could imply that the

problem of pseudo-particle ensemble stabilization is connected at the fundamental dynam-

ics level with the anticipated smallness of the
dCNc

df
contribution and, apparently, should

be addressed not so much to the description of the interacting pseudo-particles and their

interactions with the perturbative fields but rather to investigation of the time hierarchy

corresponding to the breakdown of quasi-stationary behaviour of the vacuum fluctuations

which will certainly lead to the changes of suitable effective Lagrangian (10).

In order to receive the preliminary parameter estimates we consider the simplified

model with the profile function containing only one additional parameter for describing

the screening effect as regards

f(y) =
e−αx

1 + x
, x =

y2

ρ2 . (29)

The energy E as the function of the screening parameter α is depicted in figure 1. The

lowest dashed curve shows the behaviour when the changes related to weakening of repulsive

interaction are taken into account by switching on the parameter λ only (at s = 1). The

top dashed curve was obtained with both parameters switched on. The optimal value of the

screening parameter α is determined by the minimum point of function E(α). Besides, this

figure demonstrates the stability of variational procedure of extracting the IL parameters.

For the first calculation the values of characteristic parameters for corresponding solution

were taken as α = 0.06, λ = 0.775, s = 1.0067 with the following set of the IL parameters

– 8 –
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Figure 3: The average size of IL pseudo-particles as the function of x = y2/ρ̄2. Three dashed

curves correspond to different profile functions. The lowest curve corresponds to the standard

form (4). The top dashed curve corresponds to the profile function with the screening factor (29)

which includes one parameter λ (s = 1) and the middle line shows the same function with two

parameters included. The solid curve corresponds to the selfconsistent solution of the variational

problem.

ρ̄Λ = 0.3305, n/Λ4 = 0.919, β = 17.186. These values give for the ratio of average pseudo-

particle size and average distance between pseudo-particles the quite suitable quantity

ρ̄/R = 0.324. For another calculation we have treated the parameter set characterizing the

solution as α = 0.02, λ = 0.888, s = 1.0015 and for the IL parameters the following values

ρ̄Λ = 0.315, n/Λ4 = 0.829, β = 17.67, ρ̄/R = 0.3. In order to get more orientation we

would like to mention that for the ensemble of standard pseudo-particles (α = 0, λ = 1,

s = 1) the corresponding values are ρ̄Λ = 0.301, n/Λ4 = 0.769, β = 18.103, ρ̄/R = 0.282.

Now we examine the impact of correction introduced in eq. (26) when we changed the

term
Γ(ν)

2 which has been obtained in ref. [2]. For the first calculation with the set of

solution parameters as α = 0.24, λ = 0.546, s = 1.029 we have for the IL parameters ρ̄Λ =

0.331, n/Λ4 = 1.844, β = 17.173 which lead to the ratio discussed equal to ρ̄/R = 0.386.

For another calculation we have the following results α = 0.05, λ = 0.799, s = 1.0053 and

ρ̄Λ = 0.291, n/Λ4 = 1.356, β = 18.483, ρ̄/R = 0.314. And for the ensemble of standard

pseudo-particles (α = 0, λ = 1, s = 1) these parameters are ρ̄Λ = 0.265, n/Λ4 = 1.186,

β = 19.305, ρ̄/R = 0.277.

The figure 2 and figure 3 show the behaviours of IL density and average pseudo-particle

size as the functions of distance x. The dashed lines on both plots correspond to the similar

ensembles. The lowest curves demonstrate the behaviours for the ensembles of standard

pseudo-particles (4). The top curves present the ensemble of pseudo-particles with the

profile function (29) at α = 0.06 and s = 1. And the middle dashed lines correspond to the

profile functions with α = 0.02 and s ∼ 1.03. Obviously, it may be concluded that including

– 9 –



J
H
E
P
1
2
(
2
0
0
8
)
1
1
2

even small change of the second parameter value (s ∼ 1.03) leads to the noticeable change

of ensemble characteristics (for example, the IL density) because the highest contribution

to the action when the coupling constant becomes the function of ρ is essentially modified.

Let us make now several comments as to the ’complete’ formulation of the problem

of analyzing the equation (28). It was numerically resolved by the Runge-Kutta method.

This approach combined with numerical calculation of the derivative dE
df

at every point

of consequent integration interval allows us to avoid the problems which appear when

searching the minimum of complicated functional in multidimensional space.

The initial data were fixed at the point x0 =
y2
0

ρ̄2 = 0.1. Since the IL density value

at the coordinate origin is inessential the initial form of pseudo-particle profile function is

taken without any deformations as f(x0) = 1
1 + x0

. Then at fixed values of the parameters

λ, s and β0 the coefficient c is calculated. It allows to set the slope of trajectory f ′(x0) =

−cf(1 − f)/x0 at initial point in such a form in order to have the solution going to zero

at large distances. Afterwards we find out the values of parameters λ and s requiring the

input data to coincide with the output ones within the fixed precision. The parameter

values which obey the imposed constraints are the following (input values) λ = 0.69099,

s = 1.049, β0 = 16.26 at c = 1.361 and λ = 0.691, s = 1.049, β0 = 16.263 (at the output

of variational procedure). The solid line in figure 4 shows the obtained profile f as the

function of x =
y2

ρ̄2 . The differences of profiles are smoothed over if they are presented

as the functions of y because the large magnitude of the screening coefficient, for example

α = 0.06, is compensated by enlargening the pseudo-particle size. The dashed lines on

this plot show the profile functions for the standard form (4) (top dashed line), with the

screening factor (29) including one parameter only α (s = 1) (lowest dashed curve) and

two parameters included (middle dashed line).

Another calculation (with modified Γ-function contribution) was based on the slightly

different set of relevant parameters which are for the input values λ = 0.607, s = 1.0515,

β0 = 17.04 at c = 1.545 and λ = 0.6066, s = 1.0515, β0 = 17.042 for the output one at the

finish of variational procedure. The behaviours of IL density and average pseudo-particle

size for selfconsistent solution are plotted in figure 2 and figure 3 (solid lines, respectively).1

In the table 1 we present the IL parameters at the large distances from pseudo-particle (the

first line) together with the data for the ensemble of pseudo-particles with the standard

profile function (the second line). The third and fourth lines of this table 1 are devoted to

the calculations with the second set of parameters (with factor 2 absent in eq. (26)). The

fourth line, in particular, presents the calculations for pseudo-particles with standard form

of profile function.

It is quite obvious that the utilization of optimal pseudo-particle profile function leads

to the larger pseudo-particle size but the packing fraction parameter holds, nevertheless, a

small quantity which is quite suitable for the perturbative expansion. Besides, the results

obtained allow us to conclude that with tuning Λ a fully satisfactory agreement our cal-

1It is interesting to notice that considering IL (ensemble of pseudo-particles in the singular gauge) in

the field of regular pseudo-particle we obtain the IL density value in the center of regular pseudo-particle

which is larger than its value at large distances what looks like the anti-screening effect.
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Figure 4: The various profile functions. The top dashed curve corresponds to the standard

form (4), the lowest dashed curve shows the function with the screening factor (29) including one

parameter λ (s = 1) and the middle line presents the same function with two parameters included.

The solid line corresponds to the selconsistent solution of variational problem.

ρ̄Λ n/Λ4 β ρ̄/R nρ̄4

0.381 0.743 16.263 0.354 1.582·10−2

0.331 0.769 18.103 0.282 6.277·103

0.354 1.245 17.042 0.379 1.955·10−2

0.265 1.186 19.305 0.277 5.849·10−3

Table 1: Parameters of IL.

culations of pseudo-particle size, the ensemble diluteness and gluon condensate value with

their phenomenological magnitudes extracted from the other models are easily reachable.

The calculations of several dimensional quantities in our approach are also very indicative.

The values of the screening mass (11), average pseudo-particle size and IL density obtained

for two values of Λ (200 MeV and 280 MeV) are shown in table 2. The sequence of line

meanings is identical to that in table 1 as well as the meanings of last four lines which

present the results of calculations with the second set of parameters (with factor 2 absent

in eq. (26)). Another interesting feature of this calculation is the weakening of pseudo-

particle interaction. This effect is driven by the coefficient ξ2 (∼ λ2). Our estimates for

the first set of parameters give λ = 0.691 and, hence, λ2 ∼ 0.48 and for the second set we

have (λ = 0.607) and λ2 ∼ 0.37. Let us mention here that the reasonable description of

instanton ensemble can be reached in the framework of two-component models [6] as well.

Our calculations enable us to conclude that dealing with IL model (formulated in

one-loop approach) one is able to reach quite reasonable description of gluon condensate

even being constrained by the values of average pseudo-particle size and other routine

phenomenological parameters. Moreover, the ensemble of pseudo-particles with standard

– 11 –



J
H
E
P
1
2
(
2
0
0
8
)
1
1
2

Λ MeV m MeV ρ̄GeV−1 n fm−4

200. 381 1.906 0.7496

304 1.503 0.7688

280. 533 1.361 2.88

426 1.074 2.95

200. 456 1.77 1.245

333 1.325 1.186

280. 638 1.264 4.78

466 0.946 4.56

Table 2: Screening mass and IL parameters

profile functions turns out to be very practical because introducing the other configurations

to make the similar estimates is simply unoperable. With such an approximation of the

vacuum configurations the coefficient of interaction weakening develops the magnitude

about λ2 ∼ 0.3 — 0.5. Including this effect leads to the enlargening of pseudo-particle size.

It allows us to conclude that nowadays the instantons in the singular gauge is the only

serious instrument for effective practising.
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